
Plasma Sources Sci. Technol. 7 (1998) 590–598. Printed in the UK PII: S0963-0252(98)97723-4

Surface temperature and thermal
balance of probes immersed in high
density plasma

R Piejak †, V Godyak †, B Alexandrovich † and N Tishchenko ‡

† Osram Sylvania Inc., Beverly, MA 01915, USA
‡ Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

Received 14 May 1998, in final form 24 August 1998

Abstract. The surface temperatures of thermal probes immersed in a low pressure
inductively coupled argon discharge have been measured over a wide range of gas
pressure. At a fixed discharge power, the measured temperature increases with
gas pressure and decreases with increasing probe diameter. At a discharge power
of 100 W, the surface temperature of a 0.4 mm diameter probe in the centre of the
discharge ranges from 272 ◦C at 0.3 mTorr to 590 ◦C at 1 Torr. This temperature is
considerably higher than the gas temperature. An analysis of the energy balance
on a probe surface shows that plasma particle bombardment is the dominant
heating process while radiation is the dominant cooling process. Probe
temperatures found from an energy balance are in reasonable agreement with
those measured in experiment.

1. Introduction

In practical applications of plasma discharge devices, there
are times when it is important to know the surface
temperature of an object immersed in the plasma. For
example, in plasma processing it may be important to know
the substrate temperature so that the substrate does not
overheat during processing. This could also be an important
issue in fluorescent lamps where a starting amalgam is
immersed in plasma to dispense mercury into the lamp.
Surface temperature is also an important consideration
when immersing diagnostic probes or other materials into
a low pressure plasma since the surface temperature may
exceed the gas temperature and the immersed object
may not be able to withstand these temperatures without
degrading or contaminating the gas discharge.

A first approximation of the surface temperature is
to assume the temperature of the object immersed in the
discharge to be the gas temperature of the plasma. The
gas temperature is generally determined from the balance
between the energy transfer from electron collisions with
gas atoms and the heat conduction from the discharge to the
chamber surfaces. This approach provides a lower limit to
the surface temperature and at gas pressures where thermal
conduction is the dominant surface heating mechanism this
estimate may be fairly accurate.

At low gas pressures and high plasma densities,
however, thermal conduction may be a minor heat source
to a surface and in this case the gas temperature may
be considerably lower than the actual surface temperature.

In this work the surface temperature of various diameter
probes has been measured. It is the intent of this work
to evaluate the various heating and cooling sources at a
surface immersed in a low pressure argon discharge and to
identify the dominant thermal processes.

2. Experimental set-up and temperature probes

Surface temperature and plasma parameter measurements
were made in an inductively coupled RF discharge in argon
at 6.78 MHz. An RF discharge was maintained by a
five-turn pancake (flat) coil located below a stainless-steel
cylindrical discharge chamber. The induction coil is air
cooled with compressed air blown over the coil. As shown
in figure 1, the coil was separated from the plasma by an
electrostatic screen and a Pyrex disc that was 13 mm thick.
Temperature probe and Langmuir probe measurements were
made in the midplane of the discharge chamber. The
discharge chamber has an inner diameter of 19.8 cm and a
height of 10.5 cm. The chamber is pumped with a turbo-
pump with a base pressure in the chamber in the 10−7 Torr
range. During operation, argon flows through the system;
a gas pressure controller (feedback system) keeps the gas
pressure constant. Radial and axial directed ports on the
chamber serve to support moveable temperature, Langmuir
and magnetic probes.

Temperature measurements were made using commer-
cially available fine gauge, unsheathed, chromel–alumel
junction type thermocouples. The accuracy of the probes
is about±1% of reading+1 ◦C. Dimensions of the three
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Table 1. Dimensions of the three probes used in this work. Pyrex glass tubing was used in all cases.

Probe OD (mm) Glass wall width (mm) Thermocouple wire OD (µm)

0.4 0.05 25
1.2 0.1 25
6.3 1.0 250

Figure 1. Schematic diagram of the experimental system.

probes used in this investigation are given in table 1. The
majority of measurements were made with the 0.4 mm OD
(smallest) probe. The general design guidelines for this
probe were that it be small in size to minimize discharge
perturbation and that it be constructed with thin walled glass
tubing to minimize heat flow along the tube. Larger probes
were also used to demonstrate the effect of probe pertur-
bation. Essentially, all three probes consisted of a thermo-
couple within a Pyrex tube sealed at its end; thus the probe
junction was electrically insulated from the plasma. Since
the temperature measurements were made in an inductively
driven RF discharge, a thermocouple display with high dif-
ferential and common mode rejection was used so that the
RF applied to the coil did not interfere with the temperature
measurements. RF immunity of the thermocouple display
and the Langmuir probe diagnostics was increased by prac-
tically eliminating the RF plasma potential with a planar
electrostatic shield located between the driving coil and the
plasma. The result of these precautions was that the probe
temperature immediately after RF extinction was the same
as that during the presence of RF.

Measurements were performed over a wide range of
gas pressure between 0.3 mTorr and 1 Torr with RF
power dissipation in the plasma of 100 W. To determine
discharge power, the discharge electrical characteristics
were measured and the power dissipated in the induction
coil was subtracted from the total RF power delivered to
the coil.

Table 2. Plasma and other related parameters on the
centre axis in the discharge mid-plane at 100 W discharge
power.

Parameter 1 mTorr 10 mTorr 100 mTorr

n (cm−3) 7.5× 1010 2.1× 1011 2.5× 1012

Te (eV) 4.9 3.1 1.36
b/a 1.7 1.45 1.1
Vf (V) 20.4 13.4 6.2
Tg (◦C) 213 111 262
Ts (◦C) 275 338 532
τ(1P1) (s) 1.76× 10−6 3.1× 10−5 2.1× 10−4

τ(3P1) (s) 1.5× 10−6 2.9× 10−5 2× 10−4

λi (cm) 5.03 0.4 0.055
λg (cm) 8.6 0.84 0.086
T th

s (◦C) 221 254 454
〈Pe〉 (W cm−3) 1.2× 10−5 1.57× 10−4 2× 10−3

〈Pi 〉 (W cm−3) 2.6× 10−4 1.36× 10−3 3.1× 10−3

3. Experimental results

3.1. Plasma parameters

Table 2 shows the plasma and other relevant parameters
measured and calculated at the centre axis in the discharge
midplane for a 100 W discharge. Both, the plasma density
and effective electron temperature were obtained through
integration of the EEDF measured with a Langmuir probe
[1].

3.2. Probe temperature

Figure 2 shows the probe temperature measured in the
mid-plane with the smallest probe (0.4 mm OD) two
cm from the centre axis. Over the entire range of
gas pressure, the temperature grows monotonically with
pressure reaching 500–600◦C at gas pressures between
0.1 and 1 Torr. The probe temperature rises slowly
with gas pressure at low and high pressures and rises
relatively quickly at intermediate pressures (between 10 and
100 mTorr). The rapid temperature increase at intermediate
pressures is mainly due to the dramatic rise in plasma
density as gas pressure increases. The figure ‘S’ probe
temperature dependence is attributed to the relatively weak
plasma density dependence on gas pressure at low pressures
and the rapid growth of radiation cooling at large probe
temperatures.

Radial profiles of the probe temperature have been
measured in the discharge midplane with the smallest probe
and are shown in figure 3. At the lower gas pressures,
the probe temperature profile has a wide peak about the
discharge axis, while at 1 Torr the temperature profile peaks
at 2 cm from the axis and falls more rapidly near the wall.
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Figure 2. Probe temperature measured with 0.4 mm OD
probe in mid-plane, 2 cm from centre axis for gas
pressures between 0.3 mTorr and 1 Torr at 100 W
discharge power is represented by black (solid) dots. The
probe temperature, estimated from the analysis presented
here, is given by open circles for 0.001, 0.01 and 0.1 Torr.

The probe temperature appears to be correlated with the
plasma density distribution. It is likely that this is a result
of the non-uniform maintenance RF field created by the
planar induction coil. At low gas pressure when the electron
energy relaxation lengthλε is larger than the characteristic
plasma size,3 (a condition of non-locality between the
RF field and ionization), the plasma density distribution
is practically independent of the spatial distribution of the
RF field. This is similar to the free fall regime where
the plasma density gradient is relatively small and thus
the plasma density on its boundaries is rather appreciable
[2]. In contrast, at high gas pressure whenλε < 3

(nearing the condition of local coupling between RF field
and ionization) the ionization profile tends to follow the RF
field distribution and thus the plasma density maximum is
shifted from the axis to the radius where the RF field is
strongest. When gas pressure is high the plasma density on
its boundaries is much smaller than its peak value.

3.3. Probe perturbation

It is well known from Langmuir probe studies that a body
surrounded by plasma causes a local plasma perturbation.
For a low pressure non-equilibrium gas discharge at gas
pressures below a few Torr, the main effect of this
disturbance is the depletion of the plasma around the probe
[3]. This depletion reduces probe heating (and probe
temperature) by the surrounding plasma. Plasma density
depletion around the probe scales asa/λi , wherea is the
probe radius andλi is the ion mean free path. To neglect the
plasma disturbance caused by the probe, its radius should
be small compared to the ion mean free path (a < λi). For
probes witha = 0.2 mm, this condition is satisfied below
200 mTorr in argon; therefore, probe temperature measured
at pressures above 200 mTorr may be affected by the probe
size.

To investigate the issue of local plasma perturbation
we have measured probe surface temperature with larger
diameter probes (1.2 and 6.3 mm OD). A comparison

Figure 3. Radial profile of measured surface temperature
with p = 1, 10, 100 and 1000 mTorr.

Figure 4. Measured surface temperature as a function of
gas pressure for three different probe diameters.

of the temperatures obtained with probes of differing
diameters is shown in figure 4. As shown, a higher
temperature is measured with smaller probes even at the
lowest gas pressure whena � λi . The difference between
temperatures measured with the smallest and the largest
probes grows with gas pressure reaching a factor of two
at gas pressure between 0.1 and 1 Torr. Besides the effect
of plasma perturbation, the lower temperature obtained with
larger probes may be attributed to thermal conduction along
the probe holder. The ratio of glass cross section to probe
surface of the 6.3 mm probe is 10 times larger than that
of the 0.4 mm probe. As will be shown, the rise in probe
temperature with reducing probe radius ata � λi occurs
because the probe sheath has an ion collection area that is
larger than the probe itself.

The large probe perturbation effect caused by the
presence of the 6.3 mm probe at a distance of 1 cm from
the small 0.4 mm probe is shown in figure 5. Here the
temperature difference of the small probe, with and without
the large probe nearby, is given as a function of argon
pressure. As expected, the temperature difference increases
with gas pressure. Probe perturbation also increases with
proximity of the large probe.

Experiments with different probes showed a very strong
dependence between probe size and settling time. Settling
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Figure 5. Perturbation due to the proximity of the large
probe measured with the small probe.

time in this instance is taken to be the time it takes
for the probe temperature to attain steady state after an
abrupt change in discharge power. The settling time of
the 0.4 mm probe was a few seconds while the settling
times for the 1.2 mm and 6.3 mm probes were about
1 minute and 30 minutes, respectively. The difference
in settling time is probably due to the difference in the
probe’s mass/surface ratio and the weak thermal coupling
between the thermocouple wire and the glass shell of the
large probes.

4. Energy balance on the probe surface

The temperature of a probe immersed in the plasma is
determined by a variety of processes contributing to the
energy balance at its surface. For a thin probe with
negligible heat transfer along the probe holder, the steady
state power balance equation at the probe surface is:

Ppl + Ppr + Pex = Pr + Pc (1)

wherePpl , Ppr andPex are the energy flux into the surface
due to charged particles, plasma radiation and excited
(metastable and resonant) neutral atoms, respectively, and
Pr and Pc are the energy flux from the surface due to
radiation and thermal conduction, respectively. In what
follows the energy fluxes in equation (1) will be evaluated
to determine the dominant terms in the probe power
balance.

4.1. Charged particle bombardment

For plasma with a Maxwellian EEDF, the power flux
density (W cm−2) due to electron and ion bombardment
to a cylindrical probe surface at the floating potentialVf is:

Ppl = 0.4n
b

a

(
2Te
M

)1/2

[2Te + εi + 0.5Te + eVf ] (2)

where

Vf = Te

2e

[
ln

M

2πm
− 2 ln

b

a

]
(3)

andn is the plasma density in the probe vicinity,εi is the
ionization energy of argon (15.7 eV),Te is the electron
temperature in eV,M is the ion mass,m is the electron
mass,e is the electron charge andb is the radius of the
sheath surrounding the floating probe. In equation (2) the
expression to the left of the brackets defines the ion and
electron fluxes to the floating probe. The first term in the
brackets is the average energy carried by the electrons that
reach the probe’s surface. The second term is the ionization
energy released to the probe surface upon recombination,
the third term is the initial ion energy at the plasma sheath
interface and the fourth term is the ion energy gained in the
sheath surrounding the floating probe.

The sheath radiusb can be found by equating the ion
current collected by the probe with that found from the
Child–Langmuir law:

0.4ne
b

a

(
2Te
M

)1/2

= 4

9
ε0

(
2e

m

)1/2 V 1.5
f

a2(−β2)
(4)

whereε0 is the vacuum permittivity and (−β2) is a tabulated
function of b/a in the Child–Langmuir law for concentric
cylinders. From equation (4), the relation forb/a can be
written as:
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b
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9
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)1/2 ε0V
1.5
f

nea2
. (5)

For small probes and relatively low plasma density, which
occurs at the lowest argon pressure, the ratiob/a � 1.
Note also that for large probes and high gas pressures
the plasma density around the probe may be significantly
perturbed by the probe and could be smaller than its
unperturbed value in the probe’s absence.

4.2. Probe radiation cooling

Radiation cooling from the probe surface (W cm−2) can be
determined from Stefan’s law:

Pr = σ(ξsT 4
s − ξwT 4

w) (6)

where σ is the Stefan–Boltzmann constant,σ = 5.67
×10−12 W cm−2 K−4, ξs ≈ 0.8 for Pyrex [4] andξw ≈ 1
(ξ represents total hemispherical emissivity),Ts is the
probe surface temperature andTw is the chamber wall
temperature. Although probe emissivity varies by a few
per cent over the temperature range encountered here and
the wall temperature is unlikely to be precisely constant,
the small variations in these terms have been ignored. It is
assumed that surface emissivity is unaffected by exposure to
the plasma. In steady state, the temperature of the chamber
wall Tw was measured to be about 60◦C at a discharge
power of 100 W at 10 mTorr; this wall temperature was
assumed at 1 and 100 mTorr.

4.3. Thermal conduction cooling

The surface of the probe is cooled by thermal conduction
due to gas atoms striking the probe surface. In the generally
encountered collisional regime, where the mean free path
of the atomλg is much less than the probe diameter, heat
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flux density is proportional to the local gradient of gas
temperature and the gas thermal conductivity. In this case
the heat flux to the probe can be written as:

Pcond = Nuk Ts − Tg
2a

(7)

whereTg is the gas temperature outside the boundary layer
with thickness of about one probe diameter (2a), k is the
thermal conductivity of the gas (1.6× 10−4 W cm−1 K−1)
which is assumed to be independent of gas temperature and
Nu is the Nusselt number (dimensionless thermal transfer
coefficient). For this work the boundary layer is assumed to
be free of convection around the probe andNu = 1. Note
thatNu may be much larger than one for a boundary layer
with convection.

At gas pressures considered here (between 1 and
100 mTorr), however, the mean free path of a gas molecule,
λg, is generally greater than, or equal to, the probe radius
(0.2 mm). For this condition there is no boundary layer
and an appropriate expression for heat flux is that for the
free molecule regime rather than the collisional regime. In
the free-molecule regime, heat flux is proportional to the
temperature difference (not the gradient) between the probe
surface temperature and the temperature of the surrounding
gas and the thermal conductivity is proportional to the gas
pressure. An expression for the heat flux density in the
free-molecule regime is [5]

Pc = αχp
(

273

Tg

)1/2

(Ts − Tg) (8)

whereα is the accommodation coefficient,α = (Tr − Tg)
/(Ts − Tg), χ is the free-molecule heat conductivity,Tr is
the temperature of an atom after hitting the probe surface,
Tg is the gas temperature in K just outside the probe surface
andp is the gas pressure in Torr. The free molecule heat
conductivity is [5]

χ=1.47×102M−1/2(γ +1)/(γ −1) (W cm−2 K−1 Torr−1)

(9)
whereγ is 1.67 for all noble gases andα = 0.86 for argon
[6]. Thus the free molecule heat conductivity for argon is
χ = 9.26× 10−6 W cm−2 K−1 mTorr−1.

4.4. Plasma radiation heating

Since the temperature probe is immersed in a gas discharge,
there is a significant population of excited state atoms
produced in the plasma and it is important to evaluate their
contribution to probe heating due to plasma radiation. In the
following two sections, the radiative energy transfer (this
section) and the collisional energy transfer (next section)
to the probe surface will be discussed. Energy transfer due
to visible radiation from states above the resonant states
is ignored because the photon energy is considerably less
than VUV photons and the populations of these upper lying
states are considerably less than the (lower lying)1P1 and
the 3P1 states.

In this section the radiation from the two resonance
excited states of argon,1P1 (also known as 4s[1/2]1) and

3P1 (also known as 4s[3/2]1), will be determined. The
general procedure taken to evaluate probe surface heating
due to resonance radiation is to determine the absorption
coefficient for each resonant state and to determine the
corresponding escape factor and the effective photon
lifetime for each. From the measured electron energy
distribution function, the rate coefficients for excitation and
quenching of these states are determined. Finally, based
on a particle balance equation for the (two) excited state
densities, the population of the excited states is calculated
and the radiation to the probe surface is determined.

To simplify the determination of the absorption
coefficient for resonance radiation the dominant line
broadening mechanism must be identified. There are
three general causes of spectral line broadening: natural
broadening (due to the natural radiated lifetime of the
excited state), collisional broadening (due to collisions
between excited states and electrons or heavy particles) and
Doppler broadening (due to the velocity distribution of the
emitting and absorbing atoms). Estimations of these effects
show that Doppler broadening is the dominant broadening
mechanism at the gas pressure and discharge conditions
of this work. Therefore, only Doppler broadening will be
considered in the following estimation of plasma radiation
on the probe surface. In this case the absorption coefficient
at line centre for a particular excited state is [7]

k0 = λ2

4

g∗
g0
ANg

1√
π1ωD

(10)

where1ωD is the Doppler width of the spectral line and is
given by:

1ωD = 2πc

λ

√
2kBTg
Mc2

(11)

and where λ is the transition wavelength,g∗ is the
statistical weight of the excited state (g∗ = 3 for both
resonance states),g0 is the statistical weight of the ground
state (g0 = 1), A is the transition probability (Einstein
coefficient),Ng is the number density of absorbing atoms,
c is the speed of light andkB is the Boltzmann constant.
From spectroscopic data of transition probabilities [8],
A(1P1) = 5 ×108 s−1 andA(3P1) = 1× 108 s−1.

Evaluating the absorption coefficients for 1, 10 and
100 mTorr it is found (using the temperature data in
table 2) that for the1P1 statek0 increases from 17.2 cm−1

at 1 mTorr to 1490 cm−1 at 100 mTorr. Likewise, for
the 3P1 state k0 increases from 3.6 cm−1 to 314 cm−1.
Assuming the characteristic plasma dimension to be a few
centimetres,k0R is much greater than one and this suggests
that the imprisonment time of the photons due to trapping
is considerably larger than the natural lifetime and must be
evaluated.

To determine the imprisonment time, the escape factor
of a photon must be calculated. The escape factor is
the probability that a photon covers pathr without being
absorbed [9]. Alternately, the escape factor may be
thought of as the reciprocal of the number of emissions
and absorptions of a photon prior to its escape from the
discharge [10]. Normally for an arbitraryk0R the escape
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factor is expressed in integral form:

f (k0r) = 2

π

∫ ∞
0

exp(−x2− k0r exp−x
2
) dx.

However, sincek0R � 1, the escape factor can be
evaluated from its asymptotic approximation [9]. Assuming
an infinite cylinder with radiusR (=10 cm) the escape
factor may be expressed as:

θ ≈
√
π

4k0R
√

ln(k0R)
. (12)

The imprisonment timeτi of a photon for a given excited
state is then simply the product of the natural lifetime (A−1)
andθ−1. Imprisonment times for the1P1 and the3P1 states
are given in table 2.

Because of the large values ofk0R it is clear that
the system considered here is optically thick and that
considerable radiation trapping occurs. In this case the
photon flux inside the bulk plasma is nearly uniform and
the photon flux (per cm2) can be estimated to be:

j ≈ N∗
k0τi

(13)

where N∗ is the excited state density. To evaluate
equation (13) the excited state density must be estimated. A
two-level atom is assumed so that the excited state density
can be easily estimated. In this case, the time rate of change
of excited atoms∂N∗/∂t is:

∂N∗
∂t
= nNgkgr − nN∗krg − N∗

τi
(14)

where kgr is the rate coefficient (cm−3 s−1) of excitation
from the ground state andkrg is the quenching rate
coefficient found from the principle of detailed balance
[11]. Equation (14) states that the time rate of change of
the excited state density is equal to the rate of production
of excited states directly from the ground state minus the
rate of loss of excited states due to quenching collisions
(collisions of the second kind) and radiative decay. In
steady state the excited state density is:

N∗ = nekgrNg

τ−1
i + nekrg

. (15)

The rate coefficientskgr and krg were determined for
each excited state and each gas pressure by integrating
the product of the measured electron energy distribution
function, the electron velocity and the energy independent
electron–neutral excitation cross section over the energy
spectrum. Inserting the rate coefficients into equation (15)
along with the corresponding imprisonment time and
electron density, the excited state density for the1P1

and the 3P1 were determined at 1, 10 and 100 mTorr.
Knowing the excited state density for each resonant state,
the corresponding photon flux can be determined from
equation (13). The total photon energy flux absorbed by
the probe surface is:

Ppr = ζphjtε (16)

whereζph is the probability that a photon is absorbed by
the surface (taken to be one),jt is the total radiation flux
(sum of both resonant states) andε is the average photon
energy (11.8 eV). Expression (16) provides an upper limit
appropriate for a probe immersed into the bulk plasma and
positioned away from a plasma boundary. Values ofPpr
based on equation (16) are presented in table 3 for different
gas pressures. It is interesting that radiant power to the
probe is highest at 10 mTorr.

4.5. Resonance and metastable atom heating

The final component of heating of the probe surface by
excited states is due to the bombardment of the probe
surface by resonance excited states1P1 and 3P1 and the
metastable states3P0 (also known as 4s[1/2]0) and 3P2

(also known as 4s[3/2]2). Before this heat source can be
considered it is necessary to estimate the metastable density.

As was done previously for the resonance population,
the metastable population was also determined from a
simple two level atom model. A steady-state particle
balance equation which includes the production of
metastables through electron-impact excitation (including
cascades from the upper excited states) and the loss through
ionization, quenching and diffusion loss to the walls can be
written as:

Nm = NeNgkgmτd

1+Neτd(kion + kmg) (17)

where kgm is an averaged rate coefficients for excitation
to the metastable states,kion and kmg are rate coefficients
for ionization and quenching from the metastable state
[12], respectively, andτd is the characteristic diffusion
time for metastables leaving the system. Assuming a one-
dimensional system and considering only the lowest order
diffusion mode:τd = 32/D, where3 is the characteristic
length of the system andD is the metastable atom diffusion
coefficient [9].

The power per unit area deposited on a surface due
to bombardment by excited states (metastable and resonant
states) can be written:

Pex = 0.25ξmε(Nm +N∗)
√

8kBTg
πM

(18)

whereξm is the probability of energy transfer to the surface
and the metastable and resonant states are at the neutral
gas temperature. Since the energies of the metastable
and the resonant levels are so close in value, an average
energy representing all four states was used to evaluate
equation (18). The value ofξm strongly depends on surface
material. However for this calculation it was assumed to
be one (its maximum value). For catalytic active surfaces,
like metals,ξm = 0.1–1, while for amorphous oxides, like
glasses and ceramics,ξm = 10−5–10−4 [13].

5. Gas temperature

To evaluate many of the preceding equations, it is necessary
to know the gas number densityNg and temperatureTg
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Table 3. The energy balance terms in equation (1) evaluated at 100 W discharge power. All terms are in W cm−2. In
calculation of Pex and Ppr , it was assumed that ξm = ζph = 1. The calculation of Pc is based on free molecule conductivity.

Energy balance term 1 mTorr 10 mTorr 100 mTorr

Ppl 0.2 0.28 1.2
Pr 0.35 0.57 1.8
Pc 3.9× 10−4 0.015 0.15
Ppr 0.02 0.095 0.044
Pex 5× 10−4 3.5× 10−5 2.4× 10−3

surrounding the probe.Ng is obtained directly fromTg.
Tg can be estimated by considering the gas heating and
cooling processes in the discharge chamber. In a low
pressure gas discharge, gas heating is mainly provided by
electron–atom elastic collisions and by ion–atom charge
exchange collisions.

The power spent by an electron colliding with a gas
atom is the product of the energy of the electron, the
fraction of energy lost by the electron per collision and the
number of collision per electron per second. The energy of
a particular electron with velocityv is 1/2mv2, the fraction
of energy lost per collision is(2m/M)[1 − E1/E2] where
E1 is the mean energy per atom (3

2kBTg) and E2 is the
electron’s kinetic energy, and the number of collisions per
electron per second isNσ(v)v whereσ(v) is the electron–
neutral cross section for momentum transfer. Since the
electrons possess a distribution of velocities, the average
power dissipated per electron per second is obtained by
integrating (over velocity space) the product described
above together with the electron velocity distribution
function (evdf). The evdf is assumed to be isotropic and
Maxwellian with an electron temperature (measured with a
Langmuir probe) given in table 2. For elastic collisions, the
(assumed) Maxwellian distribution gives the same result as
the measured EEPF. An assumed Maxwellian distribution
(rather than the measured one) was used here because it
made it easier to evaluate equation (19). Thus the integral
for the average power dissipated deposited into the gas by
electrons is:

Pe = Ng
(
m2

M

)∫ ∞
0
σ(v)

[
1− 3kBTg

mv2

]
v3f (v) dv (19)

where

f (v) = 4πv2

(
m

2πTe

)3/2

exp

(−mv2

2Te

)
.

The ion–atom power heating per unit volume is:

Pi = FiviPic = enE
(

2eλiE

πM

)1/2[
1− exp

−(d − x)
λi

]
(20)

whereFi = enE is the electric force acting on ions per
unit volume,vi = (2eλiE/πM)1/2 is the ion velocity in
the ambipolar fieldE and Pic = 1 − exp(−(d − x)/λi)
is the probability that an ion transfers its charge to a gas
atom prior to reaching the wall. Note that in argon at
pd < 1 Torr cm, the ion ambipolar velocityvi exceeds the
ion thermal velocityviT over most of the discharge volume

(the variable ion mobility regime in a strong electric field).
Starting withviT at the discharge centre, the ion velocity
can reach the ion sound speedvs = (Te/M)1/2� viT at the
plasma boundary (x = d). The ambipolar field is defined by
the electron temperature and by the plasma density profile,
E = (Te/ne) dn/dx, thus, for a 1D plasma profile:

Pi =
(

2λi
πMn

)1/2(
Te

dn

dx

)3/2[
1− exp

−(d − x)
λi

]
. (21)

An estimate ofPi/Pe gives:

Pi/Pe ≈ (M/m)1/2λeλ1/2
i 3−2/3 ∝ (p3)−2/3 (22)

for λi < 3, where3 is the plasma characteristic size.
Evaluation of equation (22) shows that electron heating
prevails at high gas pressure while ion heating is dominant
at low gas pressure. Note that equation (20) implies
collisional ion motion (λi < 3) and has its maximum at
p ≈ 1 mTorr whereλi ≈ 3. At lower gas pressure,Pi
should diminish due to a transition of ion motion to the
free fall (collisionless) regime. This is accounted for by
the probability factor in equation (21).

In steady state, gas heating must be equal to the
heat transferred to the chamber wall. Depending on the
gas pressure this transfer can be collisionally dominated
(diffusional regime atλg < 3) or collisionless (free
molecule regime atλg > 3); for argon λg = 3 at
p ≈ 3 mTorr.

The gas temperature at the axis of the discharge
chamber can be estimated in the diffusional regime by
solving the heat transfer equation:

∇2Tg + Pg
k
= 0 (23)

wherePg = (Pe + Pi) andk is the thermal conductivity of
argon. To solve equation (23),k is assumed constant and
the two-dimensional geometry of the discharge chamber is
reduced to one dimension by equating the characteristic
length 3 of the fundamental diffusional mode for the
two-dimensional problem to a corresponding length of
the one-dimensional problem with reduced wall separation
L0 = 2d. Thus, (π/L)2 + (2.405/R)2 = 3−2 = (π/L0)

2;
L0 = 8.1 cm and3 = 2.58 cm; i.e., the discharge chamber
is considered to act as a gap between two infinite parallel
plates separated by 8.1 cm.Pe andPi averaged over the
discharge are given in table 2. At gas pressures of 100 and
10 mTorrλg < 3 and equation (23) is used to determine
gas temperature shown in table 2.
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Surface temperature of probes

At 1 mTorr, λg > 3 and a free molecule thermal
conductivity was used to determine the gas temperature.
In this case, heat (energy) is transferred from the gas to the
wall. The gas temperature is assumed to be uniform and is
found by equating the total energy per cm2 dissipated in the
gas (due to ion heating) with the heat flux to the wall. The
energy transferred per cm2 is simply the number of atoms
hitting the surface (0.25Ngvgas) times the energy transfer
per collision (2kB [Tg − Tw]). This value for the energy
transfer per collision assumes that a gas atom rebounds from
a wall at the wall temperature and thus results in a lower
limit of gas temperature due to ion heating. An equation
describing the heat transfer similar in form to equation (8)
can be written:

χp

(
273

Tg

)1/2

(Tg − Tw) =
∫ d

0
Pi dx (24)

where Tw is the wall temperature. To determinePi the
plasma density distribution was assumed to be parabolic
with a non-zero boundary value:

n = n0

[
1− (1− h)x

2

d2

]
(25)

where h is the relative plasma density on its boundary
corresponding to the variable mobility model [14, 15]
applicable whenλi/d ≤ Tg/Te.

h = 0.86

[
3+ d

λi

]−1/2

. (26)

6. Probe temperature calculation

The calculation of the terms in the energy balance
equation (1) are given in table 3 and show that in this
experiment the bulk of the probe heating is due to plasma
bombardment given by equation (2) while the main cooling
is due to radiation given by equation (6). Therefore, the
probe surface temperature can be roughly estimated by
reducing the equation of the energy balance on the probe
surface to include only these (two) terms such that:

σ(ξsT
4
s −ξwT 4

w) = 0.4n(b/a)(2Te/M)
1/2[2.5Te+εi+eVf ].

(27)
The values of probe temperatureT ths found from
equation (27) for a 100 W argon discharge are given
in table 2 and shown in figure 2. They demonstrate a
plausible agreement with the measured temperaturesTs
and, in conjunction with the calculated gas temperature,
suggest that one should indeed expect that the surface
temperature should be somewhat independent of the gas
temperature. On the other hand, as one can see in table 3
the calculated plasma heating powerPpl is 30–50% less
than the probe radiation powerPr calculated using the
(measured) valueTs . This discrepancy could be explained
by plasma depletion caused by the probe as well as by the
many assumptions made in evaluating the energy transfer
processes. Fortunately, the fourth power of the temperature
in the Stefan law governing radiational cooling makes the
probe temperature rather insensitive to the heat input. For

p = 10 mTorr, the contribution ofPpr (0.095 W cm−2)
would change the calculatedT ths by 13%. Therefore,
equation (27) reasonably estimates the surface temperature
of a small cylindrical tube immersed in a high density, low
pressure gas discharge.

7. Conclusions

The temperature of various size temperature probes
immersed in the dense plasma of an inductively coupled
argon discharge has been measured over a wide range
of gas pressure. Unexpected high probe temperatures
(500–600◦C) at very modest discharge power were found
for argon pressures between 0.1 and 1 Torr. This brings
forth concerns for the material integrity in the design of
Langmuir and magnetic probes. It has been found that at
a fixed discharge power the probe temperature grows with
gas pressure and falls with the probe diameter, the latter
being due to a plasma density perturbation caused by the
presence of the large probe body.

The analysis of the energy balance for neutral gas
showed that at low gas pressures, typical for plasma
processing devices, the main gas heating mechanism is due
to ion charge-exchange collisions resulting from a relatively
large ambipolar ion drift velocity. The energy balance for
the probe surface has been analysed and different processes
affecting the probe temperature have been evaluated. It has
been found that in a low pressure inductive RF discharge
(or other plasma source with similar gas pressure, volume
and discharge power) the dominant surface heating process
is plasma particle bombardment and the dominant surface
cooling process is radiational cooling. Therefore, the
balance between these processes largely determines surface
temperature. Since plasma heating is proportional to
electron density and the electron density is proportional to
discharge power, one could expect the surface temperature
to be proportional to discharge power raised to the 1/4
power.

An analytical expression (equation (27)) has been
obtained which relates the temperature of a probe immersed
into the plasma to some of the plasma parameters. The
probe temperatures found from equation (27) are in
reasonable agreement with those measured in experiment.
This formula can be helpful in estimating the working
temperature of Langmuir and magnetic probes for
diagnostics of high density plasma.
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